
A, D--A73 60 1
Ji Reproduced From

Best Available Copy

Aizaiyziag the 1-ap iies User Interface Soý.tware

LýLick Kazi-fan. Len ~c Gregoty Abowd. Mike Webb

vAU-CS-93- ii '

too~

IiC

-r . Il ;

4u A
'AEL TE4O

Q~~~ DOi~a;



Analyzing the Properties of User Interface Software

Rick Kazman, Len Bass, Gregory Abowd, Mike Webb

October 1993
CMU-CS-93-201

Scol fCopte cineDTIC'
carznegiemeowuUniversity ELECTE _
Pittsburgh, PA 15213-3M90 DEC 091993 11

Abstract E
Software architecture is an increasingly m*pta research topic aW& n ir h .uiev we , v.sdn .e
the potential role of archlitcture in evaluating the properties of a sysj= iiapart chl0* 91ri"
tectume. Currently suclh architectural analysis is complicated for twop reasons autbon'6f ne-,wI- J
architectures describe their creatons in idiosyncratic temnns and tha is no dear way of u .de.- .
standing an architecture with respect to an oganization's life cycle co"cevn-efficiency, manCi-'L
ability, mod lity, and so frt. Ibis report addesses thes shortmingsbp' proposing a. .
donanbd method for analyzing software architectures called SAAM (Software Architecture
Analysis Method). Ibs method contans several s• p. A canonical functional partitioning for the.
domain is adopted. Next, some candidate architectures in this domakrare descrbed in a common-
and simple structural language, providing a neutral context in which to understand their similarities
and dfaces. Next, life cycle cocens for the quality of the resultant software are determined
and a set of benchmark asks are created which embody these concans. Finally, the architect•nres
are evaluated and compared with respect to how well they support the benchmark tasks. This report
illustrates the method by analyzing user interface architectures with respect to the quplity of modi-
fiability.

Rick Kanman is affiliated with the University of Waterloo and Carnegie Mellon University, Len
Bus and Gregory Abowd am affiliated with Carnegie Mellon University; Mike Webb is affiliated
with Carnegie Mellon University and Texas hIuruments Inc.

This work was sponsored in part by the US. Depament of Defense and monitored under ARPA
grants F19628-90-C-003 aid N00014-93-1-1119.

V93-30012

98 12 '8 084 IUIIItllll



Dc qOLlVY naw 5

Accesion For

NTIS CRA&I
DTIC TAB
Urannounced 0
Justification.

B y.........
Distribution I

Availability Codes

Avail and/or
Dist Special

Keywords: Software architecture, Method of software analysis, User interface software



AD NUMBER jDATE DTIC ACCESSION
I HIOTICE

1. REPORT IDENTIFYING INFORMi TION
' ' 1. Paf your maging ,,ddiess

A. ORIGINATING AGENCY on mrvere ofIcvm.

V,~-c . 2, Cw ermt I and2.

B. REPORT TITLE ANDIOR I JMBERS..... • ..- •.) , .• :3. Attach form to repoffs

________________ maw~ to DTIC.

C. MONITOR REPORT NUMBER 4. Useunclasified
kwomatlon ly.

5. Do not ordor docuaent
0. PREPARED UNDER CONTRACT NUMBER for6toa8 Weks.

2. Dl(TRIBUTION STATEMENTAýJ;L.4) 1j21 / Ifh Q
1. Assign AD Aufftw

fj L•IvA)\Xi17V4j) . 2. Rturn too.,qst,,.

T Form 50 PREVIOUS EDITIONS ARE OBSOLETE
DEC 91

J /

Reproduced From

Best Available Copy



1 Introduction

Software architecture is a topic of growing concern within both research and industrial circles.
This report investigates what is needed in an architectural description of a system in order to eval-
uate it with respect to some organizational or life cycle qualities.We restrict the architectural anal-
ysis to systems within a common domain and within that domain we only focus on one of many
qualities that might be satisfied. In this introduction we will first examine why architectural analy-
sis is difficult and how our method of evaluation can address these difficulties. We will then define
three perspectives on software architecture as the basis for describing different tools in a common
architectural language. Given this language for describing architectures, we formulate representa-
tive tasks as benchmarks to judge an instance of an architecture with respect to the software qual-
ity of concern.

Throughout this paper we will use the domain of user interface software as an example to demon-
strate the architectural perspectives and the method of using benchmarks to assess the quality of
an architecture. Architectural considerations in this domain are important as much of the progress
over the past decade in the development of user interfaces can be characterized as changes to the
software architecture for the user interface portion of systems.

User interface architectures are typical of architectures in other areas since they are primarily
motivated by organizational or life cycle qualities. Examples of such qualities are maintainability,
portability, modularity, reusability, and so forth. However, it is often difficult to assess the various
claims made by the developers of these architectures; claims such as:

We have developed.., user interface components that can be reconfigured with minimal
effort. (221

This [modeq slows the UIMS to be simple and independent of the graphics software and
hardware as wel as the data representation used by the application program. (32]

Serpent ... encourages the separation of software systems into user interface and "core"
application portions, a separation which wil decrease the cost of subsequent modifications
to the system. [251

This Nephew UIMS/Appkction interface is better that [sic) traditional UIMS/Application in-
terfaces from the moduladry and code reusability point of views. [281

The difficulty in assessing the validity of these claims arises for a number of reasons. When peo-
ple develop new architectures, they typically develop new terms to describe them, or use old
terms in a new way. As a result, comparison with existing architectures becomes difficult-there
is no level playing field. Furthermore, linking architectural abstractions with life cycle concerns is
problematic. Developers tend to concentrate on the functional features of their architectures, and
seldom address the ways in which their architectures support concerns within the system develop-
ment life cycle. Yet another problem is the level of indirection that can arise because a description
for a tool is provided, but what we really want to assess is the quality of instances of systems
designed with that tool. It is sometimes difficult from the literature to extract what architectural
assumptions the developers of a tool have placed on the systems which that tool will construct. In
proposing a method to evaluate a tool, we actually mean in this report that we want to evaluate the
things the tool helps a designer to build.



The main goal of this paper is to establish a method for describing and analyzing software archi-
tectures, Software Architecture Analysis Method (SAAM). The main objectives of the SAAM arc
to:

I. provide a clear description, in a common language, of the proposed software architec-
ture that exposes its main features and functionality;

2. within a particular organizational context, understand the life cycle concerns surround-
ing the use of any systems developed within the proposed software architecture, reveal-
ing which non-functional qualities of the software are most important;

3. introduce benchmark tasks as concrete instances to test the life cycle activities which
the software architecture must support;

4. evaluate the software architecture by examining its performance with respect to the
benchmark tasks.

In Section 3, we define three perspectives of a software architectural description: the functional
partitioning, the structural composition, and the allocation of function to structure. One of our
main concerns for describing architectures is the adoption of a common language that can be used
to define all architectural instances. Defining these three perspectives is a step in the direction of
defining such a common architectural language.

A secondary goal of this paper is to demonstrate the utility of the SAAM for the evaluation of user
interface architectures. In Section 4, we examine several candidate functional partitionings for
this domain (the Seeheim model (211, the PAC model [41 and the Arch/Slinky model [311) and
choose the latter as the reference architecture to examine the structural composition and allocation
for various influential user interface architectures in the research community (Serpent [ 11, Chiron
[26], and Garnet [121).

One of our key arguments is that software architectures are neither intrinsically good nor intrinsi-
cally bad; they can only be evaluated with respect to the needs and goals of the organizations
which use them. Understanding the life cycle concerns for a particular organization provides a list
of quality factors that can be used to discriminate between good and had architectural alternatives
for that organization. For example, in the Evolutionary Development Life Cycle project at Carn-
egie Mellon University, we are concerned with the architecture of systems which have long pro-
jected lifetimes--20-30 years. This is an increasingly important segment of the software market.
According to a study by Green and Sclby, the average age of all software is increasing [8]. In sys-
tems such as these, modifiability is of paramount importance. For this reason, we evaluate user
interface architectures with respect to the property of modifiability. In Section 5 we discuss qual-
ity attributes further and examine modifiability more closely, developing two benchmark tasks in
the user interface domain which shape our analysis. The use of modifiability is an example, albeit
an important one in the domain of user interfaces, chosen to demonstrate the analysis method.
Section 6 completes the demonstration of our analysis method as we compare the candidate user
interface architectures with respect to their support for the henchmark tasks.

4



2 Related Work

Our approach to the analysis of softwiire at the architectural level reflects a growing trend in soft-
ware engineering. That trend emphasizes a better understanding of general architectural concept%
as a foundation for the proof that a system meets more than just functional requirements. Perry
and Wolf argue that an architectural description provides multiple perspectives of different infor-
mation, though their perspectives would rightly be considered as perspectives on structure alone
in our work [201. They promote the use of a small lexicon of elements to portray structure as do
others [61, [2]. In developing such a lexicon in this report, our concern was for adequacy and not
completeness.

Garlan and Shaw have demonstrated how the examination of significant architectural case studies
can help to define the field of software architecture [6]. Although we have extensive experience in
the field of Human-Computer Interaction and user interface development and analysis, our main
interest in writing this paper was not so much for the HCI community but for the general software
engineering community interested in understanding how clear and coherent software architectures
can aid in analysis. We offer this paper as a case study of software architecture analysis. Those
with different architectural concepts, tools and methods might use the example of user interface
software architectures to demonstrate the benefits of their approach. In this way, the problem of
evaluating user interface architectures could be seen as a touchstone similar to the dining philoso-
phers problem in models of concurrency, or the specification of elevators in formal specification
methods. While software architecture description already has a problem domain that is being
adopted as a reference task (compiler design), the user interface architecture domain fulfills a dif-
ferent need--that of a reference task for software architecture evaluation methods.

Though we present the analysis of user interface software as only an auxiliary result of this papec
we do feel it is necessary to relate our work to prior analysis work in user interface architectural
analysis. Lane provided a design space for describing various user interface architectural solu-
tions and rules for choosing which architectural alternatives best suit a given set of design criteria
[13J. His objectives were similar to ours in that he wanted to he able to select the right architec-
ture based on desired quality attributes. However, his method was very different from ours, as his
results were based on an expert system rule base which codified empirical evidence of heuristic
design decisions made by experienced user interface developers. The results we want to provide
will be based on reasoned argumentation, and on demonstrated performance on a set of bench-
mark tasks. One could argue that our t'esults do not extend Lane's work in the domain of user
interface architectures. That would, however, be missing the main point of our paper how to carry
out an architectural analysis in any domain.

3 Perspectives on Architectures

The architectural design of a software system can be described from (at least) three perspectives:
the functional partitioning of its domain of interest, its structure, and the allocation of domain
function to that structure. These perspectives reflect a consensus within the software engineering
community, as witnessed by the literature:



[The software architecture level of design addresses] structural issues such
as gross organization and global control structure; protocols for communi-
cation, synchronization, and data access; assignment of functionality to
design elements; composition of components; scaling and performance,
and selection among design alternatives. [61

Architectural design is the activity of partitioning the requirements to soft-
ware subsystems. [26]

.Software architecture alludes to two important characteristics of a com-
puter progm,=: (1) the hierarchjical structure of procedural components and
(2) the structure of data. Software architecture is derived through a parti-
tioning process that relates elements of a software solution to parts of a
real-world problem implicitly defined during requirements analysis. [23]

[System architecture] shall describe the internal structure of the system.
The segments ... shall be identified and their purpose summarized. The
relationships among the segments .. shall be described. [ 141

We will discuss each of these perspectives in the next three subsections.

3.1 Functionality

A system's functionality is what the system does. It may be a single function or a bundle of related
functions which together describe the system's overall behavior. For large systems, a partitioning
divides the behavior into a collection of logically separated functions that together comprise the
overall system fu'-c aon but individually are simple to describe or otherwise conceptualize.

Typically, a single system's functionality is decomposed through techniques such as structured
analysis [331 or object oriented analysis [23], but this is not always the case. When discussing
architectures for a broader domain, such as we are doing here, the functional partitioning is often
the result of a domain analysis for a class of similar systems in that domain. One sign of a mature
domain, such as databases, user interfaces, flight simulators, ATMs, and VLSI design, is that over
time some function partitionings emerge that a community of developers adopt. That is, the parti-
tioning of functionality has been exhaustively studied and is typically well understood, widely
agreed upon, and canonized in implementation-independent terms. In Section 7, we discuss some
assumptions about domain analysis and functional partitioning which would lead us to suggest
that more than one partitioning might be needed to evaluate different qualities.

3.2 Structure

We divide a system's software structure into the following parts:

1. A collection of components which represent computational entities, e.g., modules, pro-
cedures, or processes, or persistent data repositories;

2. A representation of the connections between the computational entities, i.e., the com-
munication and control relationships among the components;-

6



Figure I shows the conventions we use in this report, adapted from [I], to represent the structure
of a piece of software. Square-cornered boxes with solid lines represent processes, or independent
threads of control. Round-cornered boxes represent computational components which only exist
within a process or within another computational component (e.g. procedures, modules). Square-
cornered shaded boxes represent passive data repositories (typically files). Round-cornered
shaded boxes represent active data repositories (e.g., an active database). Solid arrows represent
data flow (uni- or hi-directional) and thick grey arrows represent control flow (also uni- or hi-
directional).

Components Connections

Process (4--) -- Uni-/Bi-directional
Data Flow

CD) Computational
Component ( ) Uni-/Bi-directional

Control Flow
S Passive Data

Repository

CD) Active Data
Repository

Figure 1: Architectural notations

To understand the overall behavior of a system, we need to provide more detailed descriptions of
the computations possible within components and the overall coordination of a collection of com-
ponents with various connection relationships between them. Such computational and coordina-
tion models should be explicit and described separately [Q!]. This is not our concern in this paper.
but has been addressed elsewhere [21.

3.3 Allocation

The allocation of function to structure identifies how the domain functionality is realized in the
software structure. The purpose of making explicit this allocation is to understand the way in
which the intended functionality is achieved by the developed system. There are many structural
alternatives and many possible allocations from function into that structure. Software designers
choose structural alternatives on the basis of system requirements and constraints which are not
directly implied by the system's functional description.

4 Description of Architectures for User Interfaces

With this background, we can now describe a number of software architectures for user interfaces

7



in terms of a functional partitioning, structure and allocation of function to structure. Examining
the literature on user interface architectures reveals that such architectures fall into two classes,
depending on whether or not the architecture describes an actual implementation of a develop-
ment system. Those architectures that do not describe an actual implementation usually serve as
reference architectures for the entire domain of user interfaces; that is, they are sufficiently
abstract so as to apply to a wide variety of implementations. These reference architectures (See-
heim, PAC and Arch/Slinky) concentrate on the essential features of any architecture in the
domain of user interfaces. In our language, these reference architectures serve as canonical func-
tional partitionings for this domain. Though they do imply certain structural constraints on a soft-
ware architecture (for instance, see the remarks in Section 6.4), that is not their main contribution.
We adopt one of them (Arch/Slinky) as the canonical functional partitioning for this domain
(though we consider the ramifications of selecting PAC in Section 6.4).

The second category of architectures address actual implementations of user interface develop-
ment systems, so we can describe their structure and allocation (with respect to the Arch/Slinky
functional partitioning). The complete architectures we describe here are Serpent, Chiron and
Garnet. We expect that, over time, many other alternative architectures will be added to our dis-
cussion, including more academic systems, such as UIDE 1271 and Rendezvous [II], and more
commercially recognizable systems, such as Hypercard [71 and Visual Basic [5].

4.1 The Seeheim model

The term UIMS (User Interface Management System) was given wide exposure in a workshop in
Seeheim, Germany. Consequently, the model upon which most UIMSs are based is known as the
Seeheim model [211. This model shown in Figure 2.

Presentation Dialogue Application

User * Component * Control Interface

Figure 2: The Seeheim Model

The three main components in this model.are: presentation, dialogue and application interface.
The dialogue component is the least familiar. It is essentially an organizer of traffic between the
presentation and application-specific components. It is responsible for:

maintaining a correspondence between objects from the application domain and interface
objects from the presentation domain;

9



"* maintaining relationships among the interface objects;

"* maintaining a dynamic representation of the state of the dialogue between the other two
components; and

"* defining two communication protocols, one suitable for the functional core, and the sec-
ond for the presentation.

Dialogue components are sometimes modelled with special purpose languages [3], or make use of
special functions for coordination and control which are layered on top of an existing language
([15], [26]).

The application interface component performs those functions that are inherent to the application,
irrespective of the presentation of those functions. This is typically written in a high-level lan-
guage such as C, Fortran or Ada.

The presentation layer controls the end user interactions and generates device-level feedback for
the user. Typically, a UIMS will support some high-level user interface toolkit, such as the X tool-
kit, Sun's OpenLook toolkit or the Macintosh toolkit.

The Seeheim model does not provide a complete description of a user interface architecture. The
model was presented as a logical model and so fits our description of a functional partitioning. It
has withstood the test of time and may therefore be deemed a canonical partitioning for this
domain. Its definition is not complete enough to uncover structural decisions, though there cer-
tainly are some structural relationships that we can infer. It is confusing, therefore, that we have
chosen to portray it graphically in a language that is similar to the structural language, that is, with
boxes and arrows. The reason for this is mainly historical.

4.2 The Arch/Slinky Metamodel

The Arch/Slinky metamodel of user interface architectures [311 is an extension of the basic See-
heim model and identifies the following five basic components of user interface software:

" Functional Core (FC). This component performs the data manipulation and other domain-
oriented functions. It is these functions that the user interface is exposing to the user. This
is also commonly called the Domain Specific Component, or simply the Application.

" Functional Core Adapter (FCA). This component aggregates domain specific data into
higher-level structures, performs semantic checks on data and triggers domain-initiated
dialogue tasks. The FCA is similar to the application interface in the Seeheim model.

" Dialogue (D). This component mediates between the domain specific and presentation
specific portions of a user interface, performing data mapping as necessary. It ensures con-
sistency (possibly among multiple views of data) and controls task sequencing.

"* Logical Interaction (LI) component. This component provides a set of tooltit independent
objects (sometimes called virtual objects) to the dialogue component.

"• Physical Interaction (P1) component. This component implements the physical interaction
between the user and the computer. It is this component which deals with input and output
devices. This is also commonly called the Interaction Toolkit Component.

The Arch/Slinky model is also a functional partitioning, but is both more explicit about its slatus

9



as such, and more fine-grained than the Seeheim model. The Arch/Slinky functional partitioning
will he adopted throughout the remainder of this paper as the canonical functional partitioning
through which other architectures are examined.

4.3 PAC

The PAC conceptual model for interactive systems is understood as follows: an interactive system
is represented as a collection of Presentation-Abstraction-Control (PAC) agents which are related
in a somewhat (though not necessarily strict) top-down hierarchical structure. Each PAC agent tri-
ple represents three tightly connected components. The abstraction component contains some
application relevant piece of the system, the presentation component some interaction relevant
piece and the control component maintains a presentation-abstraction correspondence within the
agent. Control components are also responsible for maintaining compatibility between various
PAC agents related in the PAC hierarchy. Figure 3 shows a typical PAC structure.

Figure 3: A typical PAC structure

PAC does not represent a tool for constructing user interfaces; it is still just a conceptual model.
Because PAC is closer to being a true software architecture than either Seeheim or Arch/Slinky.
we can make an attempt at describing its structure and allocation (with respect to the Arch/Slinky
partitioning). In our analysis, we must assume that the PAC hierarchy is the complete description
of the run-time system, so it must contain all of the roles of the interactive system from functional
core to physical interaction. Later models of PAC (e.g., the PAC-AMODEUS model [17]) have
relaxed this constraint, viewing the PAC model as a way of decomposing the dialogue component.
which sits within the larger context of the Arch/Slinky metamodcl.
Thus, in order to evaluate PAC as a complete software architecture, we must postulate a software

IO

PA osnt ersn a too fo cosrutn usritrae;i ssiljs|ocpulmdl



structure and a mapping of functionality to this structure. We have done this in consultation with
an expert in the use of PAC f 18]. Our interpretation of PAC as a complete software architecture is
given in Figure 4. In this figure, we have indicated the functional roles of each part of the PAC
hierarchy, according to the Arch/Slinky functional partitioning. In this figure we have redrawn the
components, and indicate the data and control relationships between the various components
using the notation defined in Figure I.

i ...........

FCA C

Figure 4: PAC architecture with functional roles annotated

The application component of the topmost (root) PAC agent is the functional core of the system.
There is no presentation component in this agent, because the presentation is decomposed in the
PAC hierarchy. This is, in fact, a key motivation for PAC--to be able to decompose a presentation
and its accompanying dialogue, and to relate pieces of dialogue to pieces of presentation in a I: I
fashion. Separation of concerns was not a motivation in PAC, which is why PAC agents arc
tightly coupled (as shown hy their being enclosed within a common computational component).
This is also why more than one functional role may exist in a single PAC agent, or a number o1"
functional roles may be spread among a number of PAC agents.

Another way of looking at this partitioning is that for all non-root PAC agents in the system, their
main purpose is to partition the remaining functional roles. Prescntation components at the leaves
of the hierarchy fulfill the role of physical interaction. These leaf PAC agents would not necessar-
ily require any application component to be present, as is depicted. Responsibility for dialogue
control is distributed among the control components throughout the PAC hierarchy. The lunc-
tional core adaptor and the logical interaction components arc not explicitly represented in PAC,
although they do exist explicitly in the PAC-AMODEUS model.

II



4.4 Serpent

The three types of components which are identified in the Scecheim model of a UIMS and which
have been realized as distinct processes in the Serpent arnhitectur 131,are shown in Figure 5: a
dialogue controller, a presentation and an application.

Dialogue
LDialogue Controller

Manager

Application 1- I

Active Database

I
Presentation

Figure 5: The Serpent architecture (adapted from [31)

Application modules contain the computational semantics required for some domain application.
Although there can theoretically be many different applications contained within a given run-time
instance of Serpent, there is typically only a single application. Presentation modules represent
independent techniques for supporting interaction at both the logical and physical level com-
pletely independent of application semantics. Different presentation modules in a given run-time
instance are possible, although once again, not typical. Given that application and presentation
modules are separate, there must be a way to coordinate a given application component with a
presentation component. That is the purpose of the dialogue controller. The dialogue component
mediates the user's interaction with an application, through the control of the presentation.

All communication between Serpent components is mediated by constraints on shared data in the
database shown in Figure 5. This structure is implemented as an active database-when values in
the database change, they are automatically communicated to any component which is registered
as being interested in the data. This global database physically resides in the same process as the
dialogue controller but is logically independent from all of the Serpent components.

Figure 6 indicates how the five basic functional roles of a user interface architecture, as identilied

12



in Section 3. 1, are mapped onto Serpent's software structure.1

--- --- --- --- --- --- ............. °. . .. . .. . ..... .o.......... ... o..........

FCA Dialogue
D Controller

Dialogue
Manager

Active Databamse

.................... - ........................ ...............-. .i ..............*L Z

.............. . . . . . . .. . .............

Figure 6: Serpent architecture with functional role.% annotated

There are several points of interest to note in this re-characterization of Serpent's structure:
" there is no structural separtion between the PI and LI roles in the presentation compo-

nent;

" there is no structural separation between the FCA and D components in the dialogue con-
troller component;
""all of Serpent's components are monolithic-that is, they provide no architectural support

for subdivision of functionality within a component.

It is important to note that architectural support is only one type of support that might be provided
for subdivision of functionality. A system may provide language, design or tool support for this
purpose, for example. We do not deal with these topics in any detail here, but recognize them as
important outstanding research areas.

4.5 Chiron

The ChiFon architecture [296 was built with the exprewfed goals olfaddressing life cycle concerns
of maintainability and sensitivity to environmental changes. A Chiron architecture consise: ofa

1. Doted lines are ucrd, in this aration eeen th P and lication of the allocation of functionality to
x)rtiohr of the structure. aTis is done for analysis purbt ses only and should nom he interpreted as having any fur-

tholr significance.

13



client and a server. The client consists of an application, which exports a number of abstract data
types (ADTs) which Chiron encapsulates within Dispatchers. Dispatchers communicate with Art-
ists, which maintain abstract representations of their associated ADTs in terms of an abstract
depiction library (ADL).

A Chiron server consists of: the ADL; a virtual window system, which translates from abstract
interface depictions into concrete ones; and an instruction/event interpreter. The instruction/event
interpreter responds to requests from Artists to change the abstract description and translaws
those requests into changes to the presentation. It also responds to events from users and translates
those back into Artist requests.

A typical Chiron mun-time architecture is shown in Figure 7.

Chiron Server Chiron Client

Interee Artist DispatcherSInterpree

SI.[ Dispatcher • Application

Abstract Dsace
Depiction Dsace

ADL Library

Figure 7: A typical Chiron architecture (adapted from [29])

The Chiron architecture clearly separates the application (functional core) from the rest of the sys-
tem, as would be expected in a system which was built with the expressed goal of minimizing sen-
sitivity to environmental changes. The functional core adapter could live in the ADTs, or in the
Artists. It seems clear that the Artisms contain some of the dialogue, for example, maintaining a
correspondence between objects from the application domain and interface objects from the pre-
sentation domain. However, what is less clear, from the architectural description, is where the
"state" of the dialogue lives. For example, where does one put the information that the "paste-
option in an edit menu should be grayed out unless something has previously been cut or copied'?
Another type of dialogue issue is maintaining relationships among the interface objects. For
example, when a user selects the "Save As" option in a file menu, something in the dialogue must
cause a file selection box to be created. Once again, the location of these sorts of dialogue issues is
not clear from Chiron's architectural description. These dependencies might exist in the Artists. in
the ADTs or even in the Abstract Depiction Libraries [301.

14



The physical interaction component appears to be located in Chiron's Virtual Window System
component, and the logical interaction component is encapsulated within the ADL. As a result of
this characterization, we can provisionally annotate the Chiron architecture as shown in Figure 8.

Chiron Server Chiron Client
.PI ... . ................. --------

P I D --------------------

e, V,, :: FCA:

*: Interpreter AD

,, ,pliaio)

' : ' Abstract . , at
" . . .. . . . i D e p i t i ~o n :

: • ................ .. ..........................

Figure 8: Chir'on architecture with functional roles annotated

This re--characterization indicates the logical division of functionality in Chiron, according to the
Arch/fSlinky meta-model. Note that by re-.charactizing Chiron's architeture in this way, we can
now begin to understand its relationships to other architectures, such as Serpent's. This task is
considerably more difficult when trying to compare architectures base~d upon their own represen-
tations and claims. What we have done is to develop a common language for making architectural
comparisons.

4.6 Gamet

The emphasis of Garnet's architecture is on control of the runtime behavior of interaction ohbjcLs
and the visual aspects of the interface [ 151. This is a diffarcnt emphasis from the two previous
architectures, Serpent and Chiron, which were expressly interested in maintainability and separa-
tion of concerns.

Garnet's architecture consist of a single process, with Common Lisp and the X I I window system
as it-, functional foundations. On top of this base the Garnet toolkit has been constructed, and on
top of the toolkit are high-level Garnet tools (which can be. thought of as applications). Garnet is



thus commonly presented as a layered system, as shown in Figure 10.

Garnet Applications

Widget set

Interactors Opal Graphics

Constraint system
KR object system

xII Common Lisp

Operating System

Figure 9: The Garnet architecture (adapted from [ 151)

However, Garnet is not a strictly layered system. In a strictly layered system, the nth layer hides
all details of the layers n-I and lower, and provides services to layer n+]. In Garnet, Common
Lisp, the KR object system, and the constraint system are used directly by all layers. The Interac-
tors and Opal Graphics together strictly hide all of the X II calls. Thus, the widgets and applica-
tions do not have any operating system or window manager calls in them, only calls to the
interactors, object-oriented graphics, constraints and object system f 161.

Given this analysis, we can redraw Garnet's architecture as follows:

.............................................

F--C X:
FCA: x• PI

* :

:= W~idget set:

%-aK object system Constraint system)

1.........

Figure 10: The Garnet arta•l.,ure with functional roles annotated

The XI I window system is Garnet's physical interaction component. The widget set, interactors

16



and Opal graphics collectively comprise Garnet's logical interaction component, and make use of
the object and constraint systems as services. Finally, applications in Garnet are built on top of the
logical interaction, object and constraint component "layers", potentially utilizing the services of
all of those layers. The arrows in Figure 10 have been deliberately drawn as though they con-
nected the entire layers together, rather than showing separate arrows between each of the ele-
ments. This is because Garnet provides the object and constraint systems and logical interaction
components as services which are potentially available to all layers, rather than as encapsulated
structures. By way of comparison, the physical interaction component of Garnet is strictly hidden
from the other layers-it can only be accessed through the widget set, interactors and Opal graph-
ics.

Note that we have removed any reference to Common Lisp in our re-characterization of Garnet.
This is because Common Lisp is the language of implementation which all components use,
rather than a distinct structural entity. Similarly, we have removed reference to the underlying
operating system.

This characterization of Garnet illustrates several points: Garnet subdivides dialogue functionality
into three distinct parts and logical interaction functionality into three distinct parts. Application
functionality, however, is not subdivided, and is not separated, in specification or at runtime, from
the rest of the system. Noting where an architecture subdivides its functionality beyond what the
domain analysis does indicates the emphases of the architecture. The subdivision is the architec-
tural manifestation of the stated goals of Garnet: control of the runtime behavior of interaction
objects (dialogue) and the visual aspects of the interface (physical interaction and logical interac-
tion components).

Also, it is interesting to note that Figure 10 has actually been simplified somewhat: the connec-
tions between the FC/FCA/D component and the LI component is shown as a single link. In fact,
each of the subcomponents could be linked with any of the other subcomponents: interactors may
make use of, for example, the KR object system and the constraint system; Garnet applications
may make use of the KR object system, the constraint system, the interactors, widgets or Opal
graphics.

5 Analyzing Architectural Qualities

Architectures are not created for abstract purposes. They are typically created in response to a per-
ceived need, or shortcoming with existing software approaches to a problem. With this in mind, it
is clear that a method for evaluating architectures must take, as its starting point, a particular qual-
ity or set of qualities. Architectures can then be evaluated with respect to how well they support
these qualities.

The SAAM (Software Architecture Analysis Method) thus consists of five distinct steps:

I. Characterize the functional partitioning for the domain.

2. Map the functional partitioning onto the architecture's structural decomposition.

3. Choose a set of quality attributes with which to assess; the architecture.

4. Choose a set of concrete tasks which test the desired quality attributes.

17



5. Evaluate the degree to which each architecture provides support for each task.

The first two steps of this architecture were demonstrated in Section 4. We will demonstrate the
rest of the SAAM in the coming sections.

5.1 Choosing a Set of Quality Attributes

In order to analyze architectures for a particular quality attribute, it is necessary to understand the
implications of that attribute. Once this is done, a generic set of tests, or benchmarks, which char-
acterize that attribute can be designed, and the architecture can be evaluated in terms of this
benchmark suite. We will exemplify this process with respect to the attribute of modifiability. This
benchmark suite could have been created with respect to other attributes-portability, efficiency,
security, and so forth. We have chosen modifiability both because of the previously mentioned
emphasis on. evolutionary systems and because it is an oft-cited motivation for user interface
architectures.

"Modifiability" by itself is an abstract concept. In order to understand how to design for modifi-
ability, it is necessary to better understand the ramifications of this attribute. In order to accom-
plish this, we look at what sorts of modifications to a software system in our domain are possible.
When that is accomplished, we then decide what sorts of modifications are Likely, or representa-
tive of the domain. Then a sample set of modifications can be posited, and each candidate archi-
tecture can be evaluated according to how well they support each sample modification. This set of
posited modifications becomes a benchmark for all architectures within the application domain. It'
the application domain is well understood, the benchmark st of modifications can often he given
a sample distribution, for the purposes of ranking the individual evaluations within the posited set.

Oskarsson gives an informal characterization of classes of modifications in [191. Drawing upon
his work, we have enumerated the following class .s of modifications:

"* Extension of capabilities: adding new functionality, enhancing existing functionality;

"• Deletion of unwanted capabilities: e.g. to streamline or simplify the functionality of an
existing application;

" Adaptation to new operating envimrnments: e.g. processor hardware, I/O devices, logical
devices

"* Restructuring: e.g. rationalizing system services, modularizing, optimizing, creating reus-
able components.

5.2 Choosing a Set of Concrete Tasks

The next step in an analysis of an architecture's suitability for modifiability is to charactCriAe the
particular types of modifications which are likely within the domain. In the user interface domain,
two classes of modifications prove most common:

Because user interface development is highly iterative, extensions of capabilities (adding
new features, reorganizing the appearance of the interface, reorganizing the human-com-
puter dialogue) are rampant. This is particularly so during the initial development of a user
interface, hut such modifications are also common later in the life cycle.

I8



The iterative nature of the user interface life cycle is distinguished from typical software
engineering life cycles in that it is more based upon empirical testing and validation, and
more based upon prototyping. Requirements for the human-computer interaction portion
of a system are often not well understood in advance, and so iteration and prototyping arc
often the only ways in which to evolve a system's design. For this reason, the user inter-
face life cycle has often been characterized as a "star" shaped life cycle [121, as shown in
Figure II, in contrast to the typical software engineering life cycle models, which are rep-
resented as "waterfalls" or "spirals".

Adaptation to new operating environments is also a common modification activity which
user interface architectures must support. For example, this paper is being composed using
a desktop publishing system which is available on Unix-based workstations running the X
window system, Macintoshes running the Macintosh toolkit, and IBM-compatible PCs,
running MS-Windows. In each of these cases, the underlying functionality of the system is
identical. What does change is the devices, both logical and physical, which the user uses
to interact with the program.

Task/Functional
Analysis

Specifications

SEvaluation

Rapid Design/

Prototyping IRepresentation

Rapid
Prototyping

Figure 11: The star life cycle

The other classes of modifications identified in the previous section-restructuring and deletion
of unwanted capabilities-while not unknown, do not constitute a significant percentage of the
modifications which user interfaces undergo. We will not include them in our set of modifications.

Consequently, with this set of modilications in mind, we can now analyze the ramifications of
each type of modification on each architecture. We do this by choosing a set of concrete tasks
which test the desired quality attributes.

This process is akin to choosing a set of benchmark tasks through which a piece of software or
hardware may be evaluated. These modifications are intended to approximately model the type
and distribution of tasks which are typical of ones own software development life cycle. This is
why a set of example modifications is required.

19



5.2.1 Changing the Physical Interaction

One type of modification which is common to user interfaces is changing the physical interaction
component-typically the toolkit and/or windQwing system used. Thus, the first modification
exemplar which we examine is a change to the physical interaction componenL For example, a
move from using Motif to OpenLook or the Macintosh toolkit would be typical of this category of
modification. This modification manifests itself as a complete replacement of the physical interac-
tion component. Note that one assumption underlying this sample modification is that all interac-
tion behavior required by the logical interaction component can he met by any of the chosen
physical interaction components.

5.2.2 Changing the Dialogue

The next exemplar modification is an extension of capabilities. This class of change is, we
assume, the most common (and hence most costly overall) change in the user interface life cycle.

This modification manifests itself as a change within a single functional role, namely the dialogue
component. Our example modification is to add a single option to a menu, reflecting some piece
of application functionality which must be made available to a user.

6 Analysis of Architectures for User Interfaces

Now that we have enumerated our set of benchmark tasks, we are in a position to evaluate the
degree to which each of our candidates provides architectural support for these modifications.

6.1 Serpent

6.1.1 Changing the Physical Interaction

Changing the physical interaction component in Serpent assumes that we have an application run-
ning under one toolkit and we want to change to another which is supported within the Serpent
run-time environment. For example, this situation would occur if we had Motif running in one
Serpent PT component and OpenLook in another. What would have to change in this instance is
the binding between an application and its physical interaction toolkit. It is not clear from the
architecture of Serpent how this binding is achieved. However, it is reasonahle to assume that this
link is achieved by the dialogue controller component which accesscsw data in the global shared
data structure that was placed there by application and presentation modules. Therefore, changes
to the dialogue component would he the only necessary modification to accommodate the switch
from one toolkit to another. If the dialogue was written utilizing a sufficiently abstract set of vir-
tual obhjects, no changes to the dialogue would be necessitated. Howevet; Serpent makes no archi-
tectural provision for this: the LI and P1 components are combined into a single run-time entity.
The architecture does ensure that the PI component is isolated from the rest of the system, which
minimizes Pl dependencies.

20



6.1.2 Changing the dialogue

Serpent has isolated the dialogue controller, so it is easy to say that the second modification
type-adding an option to a menu-will occur somewhere in that module of the system. But
exactly where the change resides may be more difficult to determine as Serpent dictates no further
structure to the dialogue component. Our conclusion is that Serpent's architecture provides no
architectural support for the change beyond isolating it to the monolithic structure of its dialogue
controller module.1

6.2 Chlron

6.2.1 Changing the Physical Interaction

Chiron goes one step beyond Serpent in providing architectural support for changing the PI com-
ponent. Chiron has isolated both the PI component and the LI component in separate structures
within a Chiron server. Since the Virtual Window System only communicates with the Instruc-
tion/Event Interpreter and its associated Abstract Depiction Library, it is isolated from the rest of
the architecture. This architectural isolation means that the LI and PI components are logically
and physically separate, and therefore must communicate via a well-defined interface. The exist-
ence of such an interface means that other PI components could be inserted into the architecture
as long as they comply with the interface conventions.

This strict separation of concerns aids modifiability, by localizing the effects of a change. Thus.
we can conclude that the Chiron architecture provides significant support for changing the P1
component.

6.2.2 Changing the dialogue

Chiron fares slightly less well with respect to the second modilication. As stated in Section 4.5.
the division of dialogue responsibilities between Artists and ADTs is not precisely specified.
Hence, a modification to the dialogue may manifest itself as a change to an Artist, or a change to
an ADT, or both. If the ADTs are well-structured, changes to them should be minimal, in which
case a change to the dialogue would be isolated to the Artists. Chiron does provide support for
such a modification in that Artists are associated with individual ADTs, and so there is no mono-
lithic dialogue to modify. However, since it is not clear whether a change will affect an Artist, an
ADT, or both, we cannot claim that a strict separation of concerns for this modification exists, and
thus we cannot claim that Chiron provides strong architectural support for changing the dialogue.

6.3 Garnet

6.3.1 Changing the Physical Interaction

As can he seen from Figure 10, Garnet provides some architectural support for separating dia-

l. Note that Serpent does provide some language support for this modification. Not that is not the topic being con-
si(kred here.

21



logue concerns from application and presentation concerns, but that is not its main focus. Garnet
is much more highly language-based than any of the other architectures described in this report.
As such, many of the functions available in Garnet, such as constraints and the KR object system,
are available as integrated language services. In fact, Garnet's main emphasis is in providing intc-
grated dialogue services, rather than on physically isolating components.

Still, Garnet has successfully isolated the PI component (the X I I toolkit in Figure 10) to a single
component, and has hidden any X II dependencies behind the LI component (Opal graphics and
Interactors). Garnet has strictly separated the PI component, and so we can claim that changing
this component is supported by the architecture and should be relatively easy. In fact, a Macintosh
release of Garnet is planned.

6.3.2 Changing the dialogue

The second modification is not supported by Garnet's architecture. A dialogue in Garnet is mono-
lithic, and can involve any of the language features which Garnet provides. Thus, changing a
menu in Garnet involves locating and modifying the affected Lisp code, which may he a difficult
task in a complex interface. Garnet does provide tool and language support for this class of
change, but as we stated earlier, that is not the concern of this paper.

6.4 PAC

Though we introduced the PAC model as a functional partitioning only, it is wrong for us to
ignore some of its structural implications for user interface architectures. PAC is not realized as
toolkit for implementing user interfaces (as are Serpent, Chiron and Garnet), but it is worth con-
sidering how a notional architecture based on PAC would fare on the benchmark tasks. Though it
is clear that PAC did not directly influence such mainstay commercial interface builders such as
HyperCard, Visual Basic and NextStep, their similarities with regard to distributed dialogue make
a tempting architectural comparison. Also, Hill's Abstraction-Link-view paradigm [101, which
underlies the Rendezvous [I 1] architecture for user interface development, is strikingly similar to
PAC.

6.4.1 Changing the Physical Interaction

When we look at our sample modifications from PAC's perspective, we can see that changing the
presentation (the physical interaction component) is not a simple process. The physical interaction
component is distributed among the leaf agents in the PAC hierarchy. Substituting for the entire
physical interaction component would mean that all of these individual agents would have to he
modified. Assuming that the implementation of the system respects the modularization of the
PAC design, none of the individual changes would be difficult, hut it would require many individ-
ual changes, which is undesirable.

6.4.2 Changing the dialogue

Changing the dialogue in a PAC model is very different from previous architectures. The PAC
hierarchy is composed of a potentially large number of dialogue components. Interaction widgets

22



like a menu would certainly be considered independent PAC agents and so the location of the
modification would he much easier to isolate and fix.

Furthermore, the decomposition of the dialogue into a hierarchy otf cooperating agents means that
individual'agents have a regular structure, a well-specified relationship with the rest of the PAC
hierarchy, and are self-contained. These are just the qualities that support modifiability: ease of
locating the affected area, ease of understanding the proposed change, and separation of concerns
(so that a modification needs to be made in only one location, and affects no other location).

Facilitating the decomposition of the dialogue is, in fact, the main motivation for PAC. Thus, we
can confidently claim that PAC's architecture strongly supports changing the dialogue.

7 Conclusions and Future Work

We have provided a method for evaluating architectures, based upon two main ideas: a common
understanding and representation for architectures, and an analysis of an organization's life cycle
requirements. This method permits the comparison and ranking of architectures within the context
of an organization's particular needs. This sort of comparison has been hitherto quite difficult.

The SAAM places strong demands on an organization to articulate both its needs in terms of the
attributes being evaluated and then to choose a representative selection of tasks to demonstrate
those needs. This is in keeping, with the purpose of the SAAM which is not to criticize or com-
mend particular architectures, but to provide a method for determining which architecture sup-
port's an individual's or organization's life cycle needs. This methodology will work for other
attributes, and will most likely provide different rankings of architectures for these attributes. The
rankings with respect to an attribute can be seen as the degree to which an architecture was
designed to support that attribute.

As our understanding of this topic is, as yet, insufficient to allow for metrics by which we might
more precisely evaluate attributes in term of architectures, we simply provide ways to analyze.
compare and rank the architectures themselves. VW believe that the work of Henry and Kafura 191
on information flow points the way to an analysis technique for architectures, but it must be aug-
mented by techniques for measuring the understandability and consistency of architectures.

We must admit at this point that the analysis of user interface software is not completely satislac-
tory. Our analysis hinged solely on the allocation of function as described by the Arch/Slinky
model to the structure of the various tools. Hence, our judgement from an architectural perspec-
tive depended on whether a tool's structure localized some logical function in the domain. But
localiation is not the only concern when considering modifiability. As we already mentioned, a
tool may provide language support for further structuring within a logical component (e.g., the
use of Slang in Serpent to specify dialogue behavior in the dialogue controller). Furthermore, we
have not taken into the knowledge that structural components have of each other, even though the
structural diagrams show data and control relationships. Clearly, our analysis of modifiability is at
he',t incomplete.

We must also note an apparent tautology in our arguments. We presented the canonical domain
partitioning for user interface software and then expressed henchmark modifications in terms of
that partitioning. It is not surprising that tools whose structure mirrored the canonical partitioning

23



fare better with respect to modifiability. This suggests that domain partitioning is dependent on
software quality as well. If we were to extend our analysis to other qualities, we might very need
a different canonical partitioning. In fact, this might explain the difference between the Arch/
Slinky model and PAC-they were suggested with different software qualities in mind. Arch/
Slinky is clearly motivated by separation between its five logical components. PAC suggesLs that
separation between application and presentation is secondary to the separation of user-specilic
conceptual ohjects which comprise the individual PAC agents.

8 Acknowledgments

This research was conducted as part of the Evolutionary Development Life Cycle (EDLC) project
led by Dick Martin of the School of Computer Science at CMU. We would very much like to
thank Brian Boesch and Steve Cross of ARPA for their support of our research. We would also
like to acknowledge the intellectual input of various colleagues at CMU from the Software Engi-
neering Institute and the Computer Science Department, especially Larry Howard and Reed Little
whose thoughts on software architecture have greatly influenced our own thinking and writing.
Finally, we thank Brad Myers, Laurence Nigay and Dick Taylor for their help in understanding
Garnet, PAC and Chiron, respectively.

9 References

(11 Abowd, G., Bass, L., Howard, L., Northrop, L. "Structural Modeling: an Application Framework and
Development Process for Flight Simulators". Software Engineering Institute, Carnegie Mellon University
Technical Report CMU-SEI-TR-93-14. Pittsburgh, PA. 1993.

[2] Abowd. G., Allen, R., Garlan, G. "Using Style to Understand Descriptions of Software Architectures", in
SIGSOFT '93 Symposium on the Foundations of Software Engineering ACM Press, December, 1993.
Forthcoming.

[3] Bass, L., Clapper, B., Hardy, E., Kazman, R., Seacord, R. "Serpent: A User Interface Management Sys-
tem". Proceedings of the Winter 1990 USENIX Conference, Berk3ley, CA, January 1990, 245-258.

[41 Coutaz, J. "PAC, An Implementation Model for Dialog Design", Proceedings of Interact '87, Stuttgart,
September, 1987, 431-436.

[51 Euler, L., Maffei, E. Rauch, A. "Create Real Windows Applications in a Graphical Environment Using
Microsoft Visual Basic", Microsoft Systems Journal, July 1991, 57-70, 116.

[6] Garlan, D., Shaw, M. "An Introduction to Software Architecture". Advances in Software Engineering and

Knowledge Engineering, Volume I, World Scientific Publishing, 1993. Forthcoming.

[7] Goodman, D. The Complete HyperCard Handbook. New York: Bantam Books, 1987.

[8] Green, J., Selby, B. "Dynamic Planning and Software Maintenance: A Fiscal Approach", Naval Postgrad-
uate School, Monterey, CA, NTIS Report AD-A 112 801/6, 1981.

[9] Henry, S., Kafura, D. "Software Structure Metrics Based on Information Flow", IEEE Transactions on
Software Engineering, SE-7(5), Sept. 1981.

24



[10) HS, Rt. 'The Abstraction-Uink-View Paradigm: Using Constraints to Connect User Interf aces to Applica-
tions*, Proceedinogs of CHI V92. Monterey, CA, May 1992, 335-342.
[ 111 Hill, R., Brinck, T., Patterson. J., Rohall, S., Wilner. W. "The Rendezvous language and architecture".
Communications of the ACM, 36(l):62-7. January, 1993.

[121 Hix, D., Hartson. H. 'Formative Evaluation: Ensuring Usability in User Interfaces's, in Bass, L., Dewan,
P. (eds.) User Interface Software, Chichester John Wiley & Sons, 1993.

[131 Lane, T. "Studying software architecture through design spaces and rules, Software Engineering Insti-
* tute, Carnegie Mellon University Technical Report CMU/SEI-90-TR-1 8, Pittsburgh, PA. 1990.

1141 MiAkary Stwanc Defenisa System Softwere DeekipmenV (DOD-STD-2167A). Washington, D.C.:
United States Departmenet of Defense, 1988.

[15] Myers, B., Giuse, 0., Danner*3erg, R ., Vander Zanen, B., Kosbie, D., Pervmn, E.. Mickish, A., Marchal,
P. "Garnet: Coniprehensive Support for Graphical, Highly Interactive User Interfaces', IEEE Comp~uter,

* 23(11):71-85.

(161 Myers, B. personal communication, August 1993.

[171 Nigay, L., Coutaz, J. "Building user interfaces: Organizing software agents", ESPRIT '91 Conference,
Brussels, November 1991.

[181 Nigay, L. personal communication, June 1993.

[191 Oskarsson, 6). "Mechanisms of Modifiability in Large Software Systems", Link6ping Studies in Science
and Technology Diiseetations No. 77, 1982.

[201 Perry, D., Wolk A- "Foundations for the study of software architecture", SIGSOFT Soft ware Engineering
Woes, 17(4), October 1992, 40-52.

(211 Pfaff, G. (ed.). User Interface Management Systems. New York: Springer-Verlag, 1985.

[221 Pittnan, J., Kitrick, C. "VUIMS: A Visual User Interface Management System". Proceedings of the ACM
SIGGPU4PH Symposiumn on User Interface Software and TechnoAoq Snowbird, UT, October 1990, 36-46.

1231 Pressman, R. Softwari~ Engireering: a Phkracioner's Approach, 3rd edition. New York: McGraw-Hill,
1992.

[241 Runtaugh, J., Blaha, M., Premerlani, W., Eddy, F.. Lorenson, W. Object-Oriented Moderling and
Design. Englewood Cliffs, N.J.: Prentice-Hall, 1991.

[251 SEI, -Serpent Overview," SEI Technical Report CMU/SEl-89-UG-2, Carnegie Mellon University Soft-
ware Engineering Instihtute August 1989.

(261 Sommerville, 1. Softnwue Engineefing, 4th edition. Reading, MA: Addison-Wesley, 1992.

* 1271 Sukaviriya, P., Foley. J., Griffith. T. "A Second Generation User Interface Design Environment: The
Model and The Runtimea Architecture,* Proceedings of InteCHI '93. Amsterdam, May 1993, 375-382.

[281 Szekely, P. "Standardizing the Wnerface Between Applications and UIMSs', Proceedings of the ACM
SIGGRAPH Symposium on User Interface Software and Technology. Williamsburg, VA, November 1989,
34-42.

[291 Taylor, R., Johnson, G. -Separations of Concerns in the Chiron-1 User Interface Development and.
Management System," ProceedkWg of InteeGHI W.3 Amsterdam, May 1993, 367-374.

[301 Taylor, R. personal communication, July 1993.



(31] UIMS Tool Developers Workdsop. "A Metamodel for the Runtime Architecture of an Interactive Sys-
tem, SIGCHI Bulletin, 24(1), 32-37.

[321 Wielemaker, J., Anjewierden, A. "Separating User Interface and Functionality Using a Frame Based
Data Model", Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and Technology,
Williamsburg, VA, November 1989, 25-33.

[331 Yourdon, E. Modern StructuredAnalysis, Englewood Cliffs, N.J.: Prentice-Hafl, 1989.

26


